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We consider models of directed random polymers interacting with a defect line, which
are known to undergo a pinning/depinning (or localization/delocalization) phase transi-
tion. We are interested in critical properties and we prove, in particular, finite-size upper
bounds on the order parameter (the contact fraction) in a window around the critical
point, shrinking with the system size. Moreover, we derive a new inequality relating
the free energy F and an annealed exponent µ which describes extreme fluctuations of
the polymer in the localized region. For the particular case of a (1 + 1)-dimensional
interface wetting model, we show that this implies an inequality between the critical
exponents which govern the divergence of the disorder-averaged correlation length and
of the typical one. Our results are based on the recently proven smoothness property
of the depinning transition in presence of quenched disorder and on concentration of
measure ideas.

KEY WORDS: directed polymers, pinning and wetting models, copolymers, depin-
ning transition, finite-size estimates, concentration of measure, typical and average
correlation lengths

1. INTRODUCTION

Directed polymers interacting with a one-dimensional defect line are quite
rich in physical and biological applications, and lately have started to at-
tract much attention also in the mathematical literature.(2,11−15,21) In particu-
lar, they are an ideal framework to model (1 + 1)-dimensional interface wetting
phenomena,(6) the problem of depinning of flux lines from columnar defects in
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type-II superconductors(20) and the denaturation transition of DNA in the Poland-
Scheraga approximation.(16) In many situations, the polymer-defect interaction is
neither homogeneous nor periodic along the line. This corresponds for instance
to the presence of impurities on the wall in the case of the wetting problem, and
to the non-periodic arrangement of base pairs A–T, G–C along DNA sequences.
Therefore, one resorts very naturally to quenched disordered models.

The interplay between the (energetic) pinning effect, which tends to keep
the polymer close to the defect line, and the (entropic) depinning one, favoring
configurations which wander away from the line, is responsible for a non-trivial
pinning/depinning (or localization/delocalization) phase transition. The depinned
and pinned phases are characterized by a different behavior of the order parameter,
the contact fraction, which is essentially the density of polymer-defect contacts
along the line. In the pinned phase, the contact fraction stays positive in the
thermodynamic limit, while it vanishes in the interior of the depinned phase (finite-
size estimates of the latter statement can be found in Ref. 12). A very interesting
problem is to understand what happens at the critical line separating the two
phases. Recently, with G. Giacomin we proved that, as soon as disorder is present,
the contact fraction vanishes continuously when the critical line is approached
from the pinned region.(13) This is in striking contrast with the situation in pure
(i.e., non-disordered) pinning models, where the transition can be either of first or
of higher order, depending for instance on the space dimension. Given this result,
it is very natural to investigate how fast the contact fraction vanishes with system
size, at the critical line or in a small critical window around it. This question is
addressed in Theorem 3.1 of the present paper, where it is shown for instance that,
in the disordered situation, the contact fraction is at most of order N−1/3 log N at
criticality.

Inside the localized region, the length of the maximal excursion of the polymer
(i.e., of the longest portion of the polymer without contacts with the defect line)
is (log N )/µ,(1,15) where µ is a certain annealed exponent (cf. Sec. 3.2 for its
definition) and N is the total length of the polymer. When the critical line is
approached µ tends to zero, as well as the free energy F. In Theorem 3.3 we prove
an inequality which essentially relates the critical exponents which govern the
vanishing of µ and F at the critical line. This inequality is interesting also because,
in the particular case of a (1 + 1)-dimensional wetting model, we prove in Theorem
3.5 that F−1 and µ−1 coincide with the the typical and disorder averaged correlation
lengths of the system, respectively.

As we discuss briefly in Sec. 4, the finite-size estimates of Theorem 3.1 and
the bounds of Theorem 3.3 have a very natural generalization to the case of ran-
dom copolymers at a selective interface between two solvents,(4,11,19) which also
show a localization/delocalization transition. In this case, the relevant order pa-
rameter is not the contact fraction but the fraction of monomers in the unfavorable
solvent.
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2. RANDOM PINNING MODELS

Let S = {Sn}n=0,1,... be a time-homogeneous process with law P, taking values
in some set � and such that S0 = 0 ∈ �. We will be especially interested in the
returns to zero of S: we let τ0 = 0 and, for i ≥ 1, τi = inf{ j > τi−1 : Sj = 0}.
If τi = ∞, then by convention τi+1 = ∞. The only assumptions we make on P
is that {τi − τi−1}i=1.2,... is a sequence of IID random variables taking values in
N ∪ {∞} and that, defining K (n) := P(τ1 = n), there exists s ∈ N such that

K (sn) = L(n)

nα
, (2.1)

and K (n) = 0 if n �∈ sN, for some 1 ≤ α < ∞ and a function L(·) varying slowly
at infinity, i.e., a positive function such that limx→∞ L(xr )/L(x) = 1 for every
r > 0.(7) An example of slowly varying function is r 	→ (log(r + 1))b), for b ∈ R,
but also r 	→ exp((log(r + 1))b), for b < 1, as well as any positive function for
which limr→∞ L(r ) > 0.

On the defect line S ≡ 0 are placed random charges ω = {ωn}n=1,2,... which
we assume to be IID bounded random variables with law P. We will assume that
E[ω1] = 0 and E[ω2

1] = 1 (which, as will be clear from (2.2) below, implies no loss
of generality). The Hamiltonian describing the interaction between the polymer
and the defect line depends on two parameters, β ≥ 0 (playing the role of the
strength of the disorder) and h ∈ R (where −h represents the average energetic
gain of a polymer-line contact):

Hβ,h
N ,ω(S) =

N∑

n=1

(βωn − h)1{Sn=0}. (2.2)

The corresponding Boltzmann distribution is

dPβ,h
N .ω

dP
(S) = eH

β,h
N ,ω(S)

Zβ,h
N ,ω

1{SN=0} (2.3)

and, of course, the partition function is given by

Zβ,h
N ,ω = E

(
eH

β,h
N ,ω(S)1{SN=0}

)
. (2.4)

Here and in the following, we assume that N ∈ sN, even when not explicitly stated.
As Equation (2.3) shows, the polymer tends to touch the defect line at points

where βωn − h > 0 and to avoid it in the opposite situation. Note that there is a
competition between an energetic effect (trying to touch as many favorable points
as possible along the line) and an entropic one (trajectories which stay close to the
line are much less numerous than those which wander away). Therefore, it is quite
intuitive (and actually well known) that a (de) localization transition takes place
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when the strength of the polymer-line interaction is varied. This will be discussed
below.

Remark 2.1. We restrict to bounded disorder variables ωn just for simplicity
of exposition. The results below can be extended to more general situations but
we will not pursue this line. Let us just mention that all the results of this paper
hold also in the Gaussian case ω1 = N (0, 1). In more general cases of continuous,
unbounded disorder variables, a sufficient condition for the results to hold is that
the sub-Gaussian concentration inequality (5.2) is satisfied by P and that a certain
condition on the smoothness of the density of ω1 with respect to the Lebesgue
measure on R holds (cf. Ref. 13, condition C2). A discussion of the relevance of
concentration of measure inequalities in pinning and copolymer models can be
found in Ref. 12.

Remark 2.2. Note that only the model with endpoint SN pinned to zero is being
considered, cf. Eq. (2.3). This is just for simplicity of exposition, since this way
one has for M < N

log Zβ,h
N ,ω ≥ log Zβ,h

M,ω + log Zβ,h
N−M,θ M ω

(2.5)

(θ is the left shift: θωn = ωn+1), a property we will use several times in the proofs
of Sec. 5. By the way, note that (2.5) implies that the sequence {E log Zβ,h

N ,ω}N is
super-additive in N. One could also leave the endpoint free: in this case, in the
r.h.s. of Eq. (2.5) error terms of order log N would appear (cf. e.g. (Ref. 13 Remark
1.1)). As a consequence, in the proof of the theorems one would have to keep track
of harmless but annoying logarithmic error terms.

Remark 2.3. To make condition (2.1) more explicit note that, for instance, if
{Sn}n is the SRW (simple random walk) on � = Z

d , then (2.1) holds with s = 2
and α = 3/2 for d = 1 and α = d/2 for d ≥ 2. The Poland-Scheraga model of
DNA denaturation also fits into our framework; in this case, the physically relevant
value of α is around 2.11.(16) For the Poland-Scheraga model, the contact fraction
defined in Eq. (2.8) below corresponds to the fraction of bound base pairs.

As it is well known the infinite-volume free energy, i.e. the limit

F(β, h) = lim
N→∞

1

N
log Zβ,h

N ,ω (2.6)

exists, is almost-surely independent of ω and satisfies F(β, h) ≥ 0 (cf. e.g. Ref.
2 and 11, but proofs of these facts have appeared several times in the literature.
The non-negativity of F is proven by simply restricting the average in (2.4) to the
configurations which do not touch zero between sites 0 and N, and using Eq. (2.1).)
One decomposes the phase diagram (β, h) into depinned (or delocalized) and
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pinned (or localized) phases, D and L, defined as D = {(β, h) : F(β, h) = 0} and
L = {(β, h) : F(β, h) > 0}, separated by a critical line hc(β) = inf{h : F(β, h) =
0}. Various properties of the critical curve are known(2,11): in particular, under our
assumptions one has that, for every 0 < β < ∞,

hc(0) = log(1 − P(τ1 = ∞)) < hc(β) < ∞. (2.7)

Note that hc(0) ≤ 0, and hc(0) < 0 iff S is transient. Moreover, hc(·) is a
convex increasing function, as follows easily from the convexity of F with respect
to its arguments and from (2.7).

The order parameter associated to the (de)localization transition is the contact
fraction, defined as

�N := NN

N
:= |{1 ≤ n ≤ N : Sn = 0}|

N
. (2.8)

Since F is clearly convex as a function of h, and since it is differentiable in
h for every h < hc(β) (as was proven in Ref. 15), from the definitions of L,D it
follows that, P(dω)-a.s.,

lim
N→∞

Eβ,h
N ,ω(�N ) = −∂hF(β, h) > 0 if h < hc(β) (2.9)

while

lim
N→∞

Eβ,h
N ,ω(�N ) = 0 if h > hc(β). (2.10)

However, much more than (2.10) is true: indeed, in Ref. 12 it was proven that,
for h > hc(β),

EPβ,h
N ,ω(NN ≥ m) ≤ e−d1m (2.11)

if m ≥ d2 log N , for some constants 0 < d1(β, h), d2(β, h) < ∞. In other words,
the number of contacts with the defect line grows, typically, linearly with N for
h < hc(β) and at most logarithmically in N for h > hc(β). Finally, in Refs.13–14
it was proven that ∂hF(β, h) vanishes continuously for h ↑ hc(β) if β > 0, which
implies that, P(dω)-a.s.,

lim
N→∞

Eβ,hc(β)
N ,ω (�N ) = 0. (2.12)

In view of these facts, it is very natural to ask what is the typical size of the
contact fraction for finite N, at the critical point or very close to it. This question
will be addressed in the next section.



1030 Toninelli

3. MAIN RESULTS

3.1. Finite-Size Estimates on the Contact Fraction

Since we are interested in the finite-size scaling behavior of the system in a
window around the critical point, shrinking to zero with the system size, we allow
in general h to depend on N, and write explicitly h = hN .

Theorem 3.1. Let β > 0 and 1 ≤ α < ∞. Assume that

lim
N→∞

N t (hN − hc(β)) = b ∈ R (3.1)

for some t ≥ 0. Then,

(1) If t ≥ 1/3, then for c sufficiently large

lim
N→∞

EPβ,hN

N ,ω

(
NN ≥ cN 2/3 log N

) = 0 (3.2)

(2) If t < 1/3 and b > 0, then for c sufficiently large

lim
N→∞

EPβ,hN

N ,ω

(
NN ≥ cN 2t log N

) = 0. (3.3)

(3) If t < 1/3 and b < 0, then for c sufficiently large

lim
N→∞

EPβ,hN

N ,ω

(
NN ≥ cN 1−t

) = 0. (3.4)

It is understood that the constant c above can depend on β, α and b. Note that,
for t = 0 and b > 0, one finds back the known estimates on the contact fraction
valid in the interior of D.(12)

Remark 3.2. The estimates of Theorem 3.1 need not be optimal, in general.
Indeed, as will be clear in Sec. 5, our proof is based on the fact that F vanishes at
least quadratically when the critical line is approached from the localized region
and β > 0(13).

F(β, h) ≤ αc1(β)(hc(β) − h)2 (3.5)

for some constant 0 < c1(β) < ∞, if h < hc(β). On the other hand it is quite
reasonable, and actually expected in the physics literature, that the transition is
smoother in various situations, for instance if α ≤ 3/2 and β small. Following the
proof of Theorem 3.1 in Sec. 5 it is not difficult to realize (cf. Remark 5.1 below)
that, if one assumes

F(β, h) ≤ cF(β, α)(hc(β) − h)k (3.6)
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for every h < hc(β) then, for instance,

lim
N→∞

EPβ,hc(β)
N ,ω

(
NN ≥ cN 2/(k+1) log N

) = 0, (3.7)

for c sufficiently large. If k > 2, this would clearly improve the upper bound on the
contact fraction at the critical point given by Theorem 3.1. Estimates (3.2)–(3.4)
could also be similarly improved for all values of t and b. Unfortunately, up to now
there are no known cases where one can prove an estimate like (3.6), with k > 2,
for non-zero values of β.

3.2. µ, Versus F: An Inequality for Critical Exponents

In Refs. 1 and 15, the quantity

µ(β, h) = − lim
N→∞

1

N
log E

[
1

Zβ,h
N ,ω

]
(3.8)

was introduced. As it was proved there, in the localized phase µ is strictly positive
and related to maximal excursions of the polymer from the defect line: indeed,
for the polymer of length N the maximal distance between two successive returns
to zero of S is typically (log N )/µ(β, h). When h approaches hc(β) from below,
µ tends to zero and therefore the length of the maximal excursion diverges, on
the scale log N . More precisely, the following bounds were proven in Ref. 15: for
every β > 0 there exists 0 < c2(β) < ∞ such that

c2(β)F(β, h)2 < µ(β, h) < F(β, h), (3.9)

where the lower bound holds, say, for 0 < hc(β) − h ≤ 1. Our next result signifi-
cantly improves the lower bound in Eq. (3.9):

Theorem 3.3. For every β > 0 there exists 0 < c3(β) < ∞ such that

0 < −c3(β)
F(β, h)2

∂hF(β, h)
< µ(β, h) (3.10)

if 0 < hc(β) − h ≤ 1.

Remark 3.4. In order to give a more readable form to these bounds assume that,
for β > 0 and h < hc(β),

F(β, h) = cF(β, (hc(β) − h)−1)(hc(β) − h)νF (3.11)

and

µ(β, h) = cµ(β, (hc(β) − h)−1)(hc(β) − h)νµ (3.12)
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for some functions cF(β, x), cµ(β, x) slowly varying in x for x → ∞ (of course
νF, νµ ≥ 2, as a consequence of Eq. (3.5) and of the upper bound in Eq. (3.9); in
principle, νF, νµ can depend on β). Then, recalling the definition of slow variation
and the fact that F is convex in h, one realizes that Eq. (3.9) implies

(2 ≤)νF ≤ νµ ≤ 2νF. (3.13)

while from (3.10) follows that

νµ ≤ νF + 1. (3.14)

3.3. Typical and Average Correlation Lengths

for a (1 + 1)-Dimensional Wetting Model

Beyond giving informations about the divergence of the longest excursion
close to (but below) the critical line, bounds like (3.10) involving µ and F are
of interest because it is rather natural to expect that µ−1 (respectively F−1) has
the same divergence, for h approaching hc(β) from the localized phase, as the
average (respectively typical) correlation length of the system. Our next result,
Theorem 3.5, makes this conjecture precise at least in a specific model of (1 + 1)-
dimensional wetting.

Recall that in (Ref. 15, Theorem 2.2) it was proven that, for every bounded
local observable A (i.e., bounded function which depends on Sj only for j in a
finite subset of N), the infinite-volume limit

Eβ,h
∞,ω(A) = lim

N→∞
Eβ,h

N ,ω(A) (3.15)

exists P(dω)-almost surely, if (β, h) ∈ L. Moreover, in L truncated correlation
functions decay exponentially fast with distance. In fact, for every bounded local
observables A, B define the local observable Bk as Bk(S) = B(θ k S), where θ is
the left shift, θ Sn = Sn+1. Then, there exist a constant 0 < CA,B(β, h) < ∞, an
almost surely finite random variable CA,B(ω, β, h) and a constant d(β, h) > 0
such that,(15) in L,

E
∣∣Eβ,h

∞,ω(ABk) − Eβ,h
∞,ω(A)Eβ,h

∞,ω(Bk)
∣∣ ≤ cA,Be−d(β,h)k (3.16)

and
∣∣Eβ,h

∞,ω(ABk) − Eβ,h
∞,ω(A)Eβ,h

∞,ω(Bk)
∣∣ ≤ cA,B(ω)e−d(β,h)k . (3.17)

However, in Ref. 15 the (β, h) dependence of the constant d(β, h) was not
tracked, and lower bounds complementary to Eqs. (3.16) and (3.17) were not
obtained. It turns out that this gap can be filled, at least in the case of a rather
natural (1 + 1)-dimensional wetting model we define now. This model still belongs
to the class described by the Boltzmann distribution (2.3) but, in addition to
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the basic assumptions of Sec. 2, we require that the state space of the process
S is � = Z

+ (i.e., there is an impenetrable wall which prevents Sn < 0) and
that actually S is the SRW with increments Si+1 − Si = ±1, conditioned to be
non-negative (the condition |Si − Si−1| = 1 could be somewhat relaxed in the
theorem below, at the price of some further technical work. We will not pursue
this line). Note that in this case (2.1) holds with α = 3/2 and s = 2. This model
has a natural interpretation as a (1+1)-dimensional wetting model of a disordered
substrate.(2,6,9) The defect line represents a wall with impurities, and S the interface
between two coexisting phases (say, liquid below the interface and vapor above).
When h < 0 the underlying homogeneous substrate repels the liquid phase, and
vice versa for h > 0. L corresponds then to the dry phase (microscopic liquid
layer at the wall) and D to the wet phase (macroscopic layer).

Then, one has:

Theorem 3.5. For the wetting model just introduced, the following holds: for
every β ≥ 0 and h < hc(β),

− lim
k→∞

1

k
log E

(
Pβ,h

∞,ω(S� = S�+k =0) − Pβ,h
∞,ω(S� =0)Pβ,h

∞,ω(S�+k =0)
)=µ(β, h)

(3.18)

and, P(dω) − a.s.,

− lim
k→∞

1

k
log E

(
Pβ,h

∞,ω(S� = S�+k =0) − Pβ,h
∞,ω(S� =0)Pβ,h

∞,ω(S�+k = 0)
)=F(β, h).

(3.19)

Here it is understood that �, k, N ∈ 2N, due to the periodicity of the simple random
walk.

Remark 3.6. It would be extremely interesting, especially in view of Theorem
3.5, to fill the gap between the upper bound in Eq. (3.9) and the lower bound
(3.10) (or equivalently, between (3.13) and (3.14)). In the case of the (1 + 1)-
dimensional wetting model with ±1 increments, this would answer the question
whether typical and average correlation lengths have the same critical behavior
close to the depinning transition, or if their divergence is governed by different
critical exponents, as it happens for instance in the disordered Ising spin chain
with random transverse field of Ref. 8.

4. GENERALIZATION TO COPOLYMERS

AT A SELECTIVE INTERFACE

In this Section we sketch briefly how Theorems 3.1 and 3.3 can be extended
to the model of random copolymer at a selective interface.(4,11,19) We refer for
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instance to(11,22) for physical motivations of this model. In this case, the state space
of S is � ≡ Z and, in addition to time homogeneity of S and to the IID property of
the sequence {τi − τi−1}i , one assumes that (Si+1 − Si ) ∈ {−1, 0,+1} and that P
is invariant under the transformation S → −S. The Hamiltonian (2.2) is replaced
by

Ĥβ,h
N ,ω(S) =

N∑

n=1

(βωn − h)1{Sn<0} (4.1)

where, without loss of generality in view of the symmetry of P, we can assume
that h ≥ 0. The variables {ωn}n are IID centered and satisfy the same boundedness
assumption as in Sec. 2. The Boltzmann distribution and the partition function
Ẑβ,h

N ,ω are defined as in Eqs. (2.3) and (2.4), provided that Hβ,h
N ,ω is replaced by

Ĥβ,h
N ,ω. One should imagine the model as describing a polymer S in proximity of

the interface (S ≡ 0) between two solvents A and B, placed in the half-planes
S > 0 and S < 0, respectively. Note that Sn has the tendency to be in A whenever
βωn − h < 0 and in B if βωn − h > 0. Note also that, if h > 0, for a typical
disorder realization the polymer has a net preference to be in A, which will be
called the favorable solvent.

Again, it is known(4) that the infinite-volume free energy F̂(β, h) =
limN (1/N ) log Ẑβ,h

N ,ω exists, is almost surely independent of ω and non-negative,

so that one can define the localized and delocalized phases, L̂ and D̂, is anal-
ogy to Sec. 2. Upper(4) and lower(3) bounds are known for the critical curve
hc(β) = inf{h : F̂(β, h) = 0} but, on the basis of careful numerical simulations
plus concentration of measure considerations, none of them is believed to be op-
timal in general.(5) In contrast with the case of the pinning models of Sec. 2, for
the copolymer the order parameter associated to the localization/delocalization
transition is the fraction of monomers in the unfavorable solvent:

�̂N := N̂N

N
:= |{1 ≤ n ≤ N : Sn < 0}|

N
. (4.2)

This is rather intuitive since, comparing definitions (2.2) and (4.1), one notices
that the role of 1{Sn=0} is now played by 1Sn<0. Like for the contact fraction in
pinning models, various estimates on the order parameter are known: �̂N is of
order 1 in L̂, at most of order (log N )/N in the interior of D̂(12) and o(1) for
N → ∞ at the critical line.(13) The methods we introduce in the present paper
allow to make the last statement sharper: indeed, Theorem 3.1 holds unchanged
also for the copolymer model, provided that NN is replaced by N̂N . In particular,
therefore, �̂N is at most of order N−1/3 log N at the critical point.

Theorem 3.3 also admits a natural extension to the copolymer case: if µ̂(β, h)
is defined as in (3.8), with Zβ,h

N ,ω replaced by Ẑβ,h
N ,ω, then again Eq. (3.10) holds

with F, µ replaced by F̂, µ̂.
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In order to avoid a useless duplication of the proofs of Theorems 3.1 and
3.3, in Sec. 5 we will consider only the case of pinning models and we will not
give details for the copolymer case: as it was also the case in Refs. 12–15, it
is easy to realize that the two models can be treated analogously, if the correct
order parameter is used in each case. Just to give an example, Eq. (5.4) below
holds also for the copolymer, if NN is replaced by N̂N , as was proven in (Ref. 12,
Lemma 2.1).

5. PROOF OF THE RESULTS

Given a set 
 of polymer configurations, measurable with respect to P, it is
convenient to set

Zβ,h
N ,ω(
) := E

(
eH

β,h
N ,ω(S)1{S∈
}1{SN=0}

)
. (5.1)

Our basic technical tool is the following classical concentration inequality(17):
if ω = {ωn}n is a sequence of IID bounded random variables with law P, there
exist constants 0 < C1, C2 < ∞ such that, for every convex Lipschitz function
f : R

n → R, one has:

P(| f (ω1, . . . , ωn) − E f (ω1, . . . , ωn)| ≥ t) ≤ C1 exp

(
− C2t2

‖ f ‖2
Lip

)
(5.2)

for every t > 0, where ‖ f ‖Lip is the Lipschitz norm of f with respect to the
Euclidean norm in R

n , i.e., the smallest M ≥ 0 such that

sup
x,y∈Rn

x �=y

| f (x) − f (y)|
[�n

i=1(xi − yi )2]1/2
≤ M. (5.3)

The way we will employ this inequality is by noting that (1/N ) log Zβ,h
N ,ω,

considered as a function of ω1, . . . , ωN , is convex and has a Lipschitz constant at
most β/

√
N . More generally, one has the following (Ref. 12, Lemma 2.1): let 
m

be a set of polymer trajectories such that NN ≤ m for every S ∈ 
m . Then,

E

(∣∣∣∣
1

N
log Zβ,h

N ,ω(
m) − 1

N
E log Zβ,h

N ,ω(
m)

∣∣∣∣ ≥ t

)
≤ C1 exp

(
−C2

N 2t2

β2m

)
.

(5.4)

This is simply proven by noting that (1/N ) log Zβ,h
N ,ω(
m) has a Lipschitz

constant at most β
√

m/N .

Proof of Theorem 3.1. For m ∈ N ∪ {0}, consider the restricted partition
function

Zβ,h
N ,ω(NN = m) (5.5)
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where the number of contacts with the line, NN , is constrained to m. Thanks to
the fact that the differences τi − τi−1 between successive return times to zero of S
are independent under the law P, one has

1

N
E log Zβ,h

N ,ω(NN = m) ≤ lim
k→∞

1

k N
E log Zβ,h

k N ,ω(Nk N = km)

≤ φ
(
β,

m

N

)
− h

m

N
, (5.6)

where

φ(β, x) = lim
ε↘0

lim
N→∞

1

N
E log Zβ,0

N ,ω(�N ∈ [x − ε, x + ε]). (5.7)

The limits in Eq. (5.7) exist for monotonicity reasons. In Ref. 13 it was proven
that, under some assumptions on P (assumptions which are satisfied, in particular,
in the case of bounded random variables we are considering here), one has for
β > 0

φ(β, x) ≤ −c4(β)

α
x2 + hc(β)x, (5.8)

for some constant 0 < c4(β) < ∞ depending only on the law P.

Remark 5.1. Equation (5.8) follows simply from Eq. (3.5) and from the fact
that, as was proven in Ref. 13, F is related to the function φ of Eq. (5.7) via the
Legendre transformation

F(β, h) = sup
x∈[0,1]

(φ(β, x) − hx). (5.9)

(Actually, in Ref. 13 the reverse path was followed: first (5.8) was proven,
and then (3.5) was deduced). If one could prove Eq. (3.6) with k > 2, (5.8) would
be immediately improved into

φ(β, x) ≤ −c̃F(β, α)xk/(k−1) + hc(β)x (5.10)

for some 0 < c̃F(β, α) < ∞.

Equation (5.8), together with (5.6), implies that for every N ∈ sN, m ∈ N ∪
{0}

1

N
E log Zβ,hN

N ,ω (NN = m) ≤ −c4(β)

α

( m

N

)2
− (hN − hc(β))

m

N
. (5.11)

Let us consider first the case b > 0, t < 1/3. Then, for N sufficiently large
one has, uniformly in m,

1

N
E log Zβ,hN

N ,ω (NN = m) ≤ −b

2
N−t m

N
. (5.12)
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We let E1 be the event

E1 =
{

there exists m ≥ cN 2t log Nsuch that
1

N
log Zβ,hN

N ,ω (NN = m)

≥ −b

4
N−t m

N

}
. (5.13)

To estimate the probability of E1, we employ Eq. (5.4) and we find

P[E1] ≤ C1

∑

m≥cN 2t log N

e
−C2

b2m N−2t

16β2 (5.14)

which decays to zero for N → ∞, if c is large enough. On the complementary of
the event E1, one the other hand, one has

Pβ,hN

N ,ω (NN ≥ cN 2t log N ) =
∑

m≥cN 2t log N Zβ,hN

N ,ω (NN = m)

Zβ,hN

N ,ω

≤ c5 N 2α
∑

m≥cN 2t log N

e− bm N−t

4 (5.15)

which also decays to zero. In Eq. (5.15) we used the obvious bound

Zβ,h
N ,ω ≥ Zβ,h

N ,ω({Sn �= 0 for every n < N }) = K (N )eβωN −h ≥ (c5)−1 N−2α,

(5.16)

cf. Eq. (2.1) and the definition of slowly varying function. Equations (5.14) and
(5.15) together imply (3.3).

Next, consider the case t ≥ 1/3. It is immediate to check that, for N suffi-
ciently large and m ≥ cN 2/3 log N , the r.h.s. of Eq. (5.11) is smaller than

−c4(β)

2α

( m

N

)2
.

Then, one defines

E2 =
{

there exists m ≥ cN 2/3 log N such that
1

N
log Zβ,hN

N ,ω (NN = m)

≥ −c4(β)

4α

( m

N

)2
}

(5.17)

and notes that, in analogy with Eqs. (5.14) and (5.15),

P[E2] ≤ C1

∑

m≥cN 2/3 log N

e
−C2

c4(β)2m3

16α2 N2β2 (5.18)
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while, on the complementary of the event E2,

Pβ,hN

N ,ω (NN ≥ cN 2/3 log N ) ≤ c5 N 2α
∑

m≥cN 2/3 log N

e− c4(β)m2

4N , (5.19)

which together imply (3.2), for c large.
Finally, the case b < 0 and t < 1/3. One realizes easily that, for N, c suffi-

ciently large and m ≥ cN 1−t , the r.h.s. of Eq. (5.11) is smaller than

−|b|N−t m

N
.

Then, one defines

E3 =
{
∃m ≥ cN 1−t such that

1

N
log Zβ,hN

N ,ω (NN = m) ≥ −|b|
2

N−t m

N

}
(5.20)

and notes that

P[E3] ≤ C1

∑

m≥cN 1−t

e
−C2

b2

4β2 N−2t m
(5.21)

which decays to zero for N → ∞ since t < 1/3 while, on the complementary of
the event E3,

Pβ,hN

N ,ω (NN ≥ cN 1−t ) ≤ c5 N 2α
∑

m≥cN 1−t

e− |b|
2 N−t m . (5.22)

Equation (3.4) follows as in the previous cases. �

Proof of Theorem 3.3. Define preliminarily, for every x ∈ [0, 1] and ε > 0,

EN ,x,ε :=
{
ω :

1

N
log Zβ,h

N ,ω(�N ∈ [x − ε, x + ε]) <
F(β, h)

2

}
. (5.23)

Then,

E

[
1

Zβ,h
N ,ω

]
≤ exp(−N F(β, h)/2) + E

[
1{EN ,x,ε }

Zβ,h
N ,ω

]

≤ exp(−N F(β, h)/2) + c5 N 2α
P[EN ,x,ε].

(5.24)

Thanks to the Legendre transformation relation (5.9) and from the infinite
differentiability of the free energy for h < hc(β),(15) it follows that the value x̄(h),
which realizes the supremum in Eq. (5.9), is unique, smooth as a function of h and
satisfies x̄(h) = −∂hF(β, h). Moreover, since φ(β, x̄(h)) − hx̄(h) = F(β, h), one
has immediately

lim
N→∞

1

N
E log Zβ,h

N ,ω(�N ∈ [x̄(h) − ε, x̄(h) + ε]) = F(β, h). (5.25)
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Thanks to Eq. (5.4), one has then for ε sufficiently small

P
[
EN ,x̄(h),ε

] ≤ C1e
−C2

NF(β,h)2

8β2(−∂h F(β,h)) (5.26)

for N sufficiently large. Therefore, recalling Eq. (5.24), always for N large one
finds

E

[
1

Zβ,h
N ,ω

]
≤ exp(−N F(β, h)/2) + C1e

−C2
NF(β,h)2

16β2(−∂h F(β,h)) (5.27)

which immediately implies Eq. (3.10) for hc(β) − h > 0 sufficiently small. Indeed,
since F(β, .) is a convex function and F(β, hc(β)) = 0, one has

F(β, h)

−∂hF(β, h)
≤ hc(β) − h,

which implies that, for hc(β) − h small, the second term in the r.h.s. of Eq. (5.27)
is the larger one.

Proof of Theorem 3.5. Recall that here �, k, N ∈ 2N. We start with the upper
bounds on the correlation lengths, which are somewhat easier. Observe first that

Cβ,h
N ,ω(�, k) := Pβ,h

N ,ω(S� = S�+k = 0) − Pβ,h
N ,ω(S� = 0)Pβ,h

N ,ω(S�+k = 0)

= Eβ,h,⊗2
N ,ω

[(
1{S1

� =S1
�+k=0} − 1{S1

� =S2
�+k=0}

)
1{E}

]
,

(5.28)

where Pβ,h,⊗2
N ,ω (·) is the product Gibbs measure for two independent, identical copies

S1, S2 of the polymer and E is the event

E = {∃/ j : � < j < � + k, S1
j = S2

j

}
. (5.29)

Indeed, the expectation in Eq. (5.28) vanishes if conditioned on the comple-
mentary of E, as is immediately realized via a symmetry argument based on the
Markov property of the SRW conditioned to be non-negative. An analogous trick
was used in the proof of (Ref. 15, Theorem 2.2). Then, it follows that

Cβ,h
N ,ω(�, k) ≤ Pβ,h,⊗2

N ,ω (E) = 2Pβ,h,⊗2
N ,ω

(
S2

j > S1
j ∀ j : � < j < � + k

)

≤ 2Pβ,h
N ,ω(Sj > 0 ∀ j : � < j < � + k)

(5.30)

where in the second and third steps we used the fact that, since the polymer tra-
jectories have increments of unit length, S1 and S2 cannot cross without touching.
At this point, let us condition on the last return to zero of S before � + 1, which
we call m, and on its first return r after � + k − 1, and observe that

Zβ,h
N ,ω ≥ Zβ,h

N ,ω(Sm = Sr = 0) = Zβ,h
m,ω Zβ,h

r−m,θmω Zβ,h
N−r,θ r ω (5.31)
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where, we recall, θ is the left shift: θωn = ωn+1. From (5.30) one obtains

Cβ,h
N ,ω(�, k) ≤ 2

∑
0≤m<�

�+k≤r≤N

Pβ,h
N ,ω({Sm = Sr = 0} ∩ {Sj > 0∀ j : m < j < r})

≤ 2
∑

0≤m<�

�+k≤r≤N

K (r−m)eβωr −h

Zβ,h
r−m,θm ω

≤ c6
∑

0≤m≤�

�+k≤r

1
Zβ,h

r−m,θm ω
.

(5.32)

Recalling the definition (3.8) of µ, and the fact that (1/s) log Zβ,h
s,ω converges

to F(β, h) P(dω)-a.s. for s → ∞, one obtains for every δ > 0

ECβ,h
N ,ω(�, k) ≤ c7e−(µ(β,h)−δ)k (5.33)

and

Cβ,h
N ,ω(�, k) ≤ c8(ω)e−(F(β,h)−δ)k (5.34)

where c8(ω) is P(dω)-almost surely finite. Here and in the following we omit the
possible dependence on β, h and � of the constants, in order to keep notations
lighter. Note however that c7 can be chosen independent of �. Since neither c7 nor
c8(ω) depend on N, the N → ∞ limit can be taken in the l.h.s. of Eqs. (5.33) and
(5.34).

As for the lower bound, we start by observing that, by Eq. (5.28), one has the
identity

Cβ,h
N ,ω(�, k) = Pβ,h,⊗2

N ,ω

({
S1

� = S1
�+k = 0

} ∩ {
S2

j > S1
j ∀ j : � ≤ j ≤ � + k

})
.

(5.35)

Indeed, thanks to the constraint 1{E}, it cannot happen that S1
� = S2

� = 0,
otherwise also S1

�+1 = S2
�+1 = 0, since Sj ≥ 0 and |Sj − Sj−1| = 1. Similarly, it

cannot happen that S1
�+k = S2

�+k = 0. For this reason, the first term in the last line
of (5.28) gives the r.h.s. of (5.35). In view of analogous considerations, the second
term is identically zero, since there are no polymer configurations belonging to
E, i.e., not crossing each other, and satisfying S1

� = S2
�+k = 0. On the other hand,

thanks to (Ref. 15, Lemma A.1), one can bound

Zβ,h
N ,ω ≤ c9kc9 Zβ,h

N ,ω(Si = Sj = 0) (5.36)

for some c9 independent of ω, provided that i, j ≤ 2k. Indeed, Lemma A.1 of
Ref. 15 states that there exists an ω-independent constant 0 < c10 < ∞ such that
for every N , k ∈ 2N, k ≤ N and every ω we have

Pβ,h
N ,ω(Sk = 0) ≥ 1

c10(k ∧ (N − k))c10
e−β|ωk |−h, (5.37)

from which inequality (5.36) easily follows.



Critical Properties of Depinning Transitions 1041

Fig. 1. (a): Typical trajectories S1 ∈ A�,k
1 (dashed line) and S2 ∈ A�,k

2 (full line). (b): Typical trajecto-

ries S1 ∈ A�,k
3 (dashed line) and S2 ∈ A�,k

4 (full line). We assumed to simplify the picture that log k is
an integer number and that k is multiple of log k. S2 is constrained to go up with slope 1 between � − 2
and � + log k, and to go down with slope −1 between � + k − log k and � + k + 2. Between � + log k
and � + k − log k, S2 cannot go below level log k + 2 = S2

�+log k . Therefore, S2 never touches zero

between � − 1 and � + k + 1 and S1 is strictly lower than S2 between � and � + k.

In order to keep notations in the following formulas simple, let us introduce
some useful sets of polymer trajectories (see Figure 1):

A�,k
1 := {S : S� = S�+k = 0}

A�,k
2 := {S : S�−2 = S�+k+2 = 0}

A�,k
3 :=

{
S ∈ A�,k

1 : S�+ j�log k� = 0 for every j ∈ 2N, 1 ≤ j ≤
⌊

k
�log k�

⌋}

A�,k
4 := {

S ∈ A�,k
2 : S�+�log k� = S�+k−�log k� = �log k� + 2 and

Sj > �log k� + 1 for � + �log k� ≤ j ≤ � + k − �log k�}.

(5.38)

Of course, A�,k
4 is non-empty only for k sufficiently large so that k ≥ 2�log k�.

If 
̂ is a P⊗2-measurable set of trajectories of S1, S2 we define, in analogy with
Eq. (5.1),

Zβ,h,⊗2
N ,ω (
̂) := E⊗2

(
eH

β,h
N ,ω(S1)+Hβ,h

N ,ω(S2)1{(S1,S2)∈
̂}1{S1
N =0}1{S2

N =0}
)

. (5.39)

Then, one has the obvious lower bound

Cβ,h
N ,ω(�, k) ≥

Zβ,h,⊗2
N ,ω

({
S1 ∈ A�,k

1

}∩{
S2

j > S1
j ∀ j : � ≤ j ≤ � + k

}∩{
S2 ∈ A�,k

2

})

(
Zβ,h

N ,ω

)2

(5.40)
and, thanks to Eq. (5.36),

(
Zβ,h

N ,ω

)2 ≤ c2
9k2c9 Zβ,h

N ,ω

(
S ∈ A�,k

1

)
Zβ,h

N ,ω

(
S ∈ A�,k

2

)
. (5.41)

The numerator in Eq. (5.40) can be bounded below requiring that S1 ∈ A�,k
3

and S2 ∈ A�,k
4 . At this point the constraint {S2

j > S1
j ∀ j : � ≤ j ≤ � + k} becomes
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superfluous, since it is automatically satisfied if S1 ∈ A�,k
3 and S2 ∈ A�,k

4 , and one
obtains

Cβ,h
N ,ω(�, k) ≥ c−2

9 k−2c9
Zβ,h

k,θ�ω

(
S ∈ A0,k

3

)

Zβ,h
k,θ�ω

Zβ,h
k+4,θ�−2ω

(
S ∈ A2,k

4

)

Zβ,h
k+4,θ�−2ω

. (5.42)

Note that the trajectories belonging to A2,k
4 never touch the defect line in the

interval {1, . . . , k + 3}. Therefore, in Zβ,h
k+4,θ�−2ω

(S ∈ A2k
4 ) the pinning Hamiltonian

gives no contribution except at the boundary point k, and one is left with a SRW
computation. An easy counting of allowed trajectories gives, for large k,

Zβ,h
k+4,θ�−2ω

(
S ∈ A2,k

4

) ≥ k−c11 (5.43)

uniformly in ω. Secondly, applying repeatedly (Ref. 15, Lemma A.1) one obtains

Zβ,h
k,θ�ω

(
S ∈ A0,k

3

) ≥ c−k/ log k
12 (log k)−c12k/ log k Zβ,h

k,θ�ω
. (5.44)

Plugging the lower bounds (5.43), (5.44) into (5.42) and taking the N → ∞
limit one finally finds

Cβ,h
∞,ω(�, k) ≥ c13e−c14

k
log k log(log k)

Zβ,h
k+4,θ�ω

. (5.45)

The conclusions

ECβ,h
∞,ω(�, k) ≥ c15e−(µ(β,h)+δ)k (5.46)

and

Cβ,h
∞,ω(�, k) ≥ c16(ω)e−(F(β,h)+δ)k (5.47)

are obtained, for every δ > 0, by recalling the definition of µ(β, h) and the fact
that (1/k) log Zβ,h

k,ω converges to F(β, h) almost surely. Together with Eqs. (5.33)
and (5.34), these imply the desired results (3.18), (3.19).

Remark 5.2. It is interesting to compare the strategy leading to the upper bounds
(5.33), (5.34) with the coupling method introduced in Ref. 18 to estimate the speed
of convergence to equilibrium of some special renewal sequences. The connection
between polymer measures and renewal equations is not casual: for instance, a
moment of reflection (or a look at Appendix A of Ref. 12) shows that, in the
homogeneous case β = 0, the polymer measure can be rewritten exactly in terms
of the renewal process where the probability that the time elapsed between two
successive renewals is n is given by K (n) exp(−nF(0, h) − h).
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